Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells
نویسندگان
چکیده
Fusobacterium nucleatum (F. nucleatum) plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α) and reactive oxygen species (ROS) in Caco-2 colorectal) adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron) could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (ATG5 or ATG12) in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells.
منابع مشابه
TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacterium nucleatum in vivo
Toll-like receptors (TLRs) 2 and 4 play critical roles in intestinal inflammation caused by Fusobacterium nucleatum (F. nucleatum) infection, but the role of TLR2/TLR4 in regulation of proinflammatory cytokines remains unknown. In this study, through microarray analysis and qRT-PCR, we showed that TLR2/TLR4 are involved in the F. nucleatum-induced inflammatory signaling pathway in Caco-2 cells,...
متن کاملMurine Experimental Root Canal Infection: Cytokine Expression in Response to F. nucleatum and E. faecalis.
The aim of this study was to evaluate the gene expression of proinflammatory (RANKL, TNF-a and IFN-g) and regulatory (TGF-b and IL-10) cytokines as reaction to experimental infection by mono or bi-association of Fusobacterium nucleatum (ATCC 10953) and Enterococcus faecalis (ATCC 19433). F. nucleatum and E. faecalis, either in mono- or bi-association were inoculated into the root canal system (...
متن کاملBiomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells
The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملInterleukin-8 and intercellular adhesion molecule 1 regulation in oral epithelial cells by selected periodontal bacteria: multiple effects of Porphyromonas gingivalis via antagonistic mechanisms.
Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of...
متن کامل